
BRUHAT INTERVALS AND POLYHEDRAL CONES

MATTHEW DYER

Abstract. Lecture notes by Matthew Dyer for lectures at the workshop “Coxeter
groups and convex geometry.”

1. Root labelled Bruhat graph

1.1. Bruhat order. Let (W,S) be a Coxeter group. Bruhat order is the partial
order defined by the following proposition; see [3] and [13] for more details.

Proposition. There is a partial order ≤ on W with the following properties. Let
w ∈ W and w = s1 . . . sn, n = l0(w), si ∈ S be a reduced expression for w. Then
v ≤ w if and only if there exist m ≤ n and 1 ≤ i1 < . . . < im ≤ n such that
v = si1 · · · sim. This statement is also true with an extra condition m = l(v)

1.2. Root-labelled Bruhat graph. Fix a based root system (Φ,Π) with respect
to (V, 〈−,−〉), with associated Coxeter system (W,S). For some purposes, more
general notions of root system including those of algebraic groups, Kac-Moody Lie
algebras etc would be more natural. Let l0 denote the standard length function
of (W,S). We fix a length function l : W → Z by l = ±l0 (there are many other
suitable l; we shall not discuss them though they are required for proofs of some
results even for l0).

1.3. Bruhat graph. Bruhat order may also be defined in the following equivalent
way.

Definition. (a) Define a directed graph Ω = Ω(W,S,l) with vertex set W and edge
set E = { (x, sαx) | x ∈ W, l(sαx) > l(x) }. Give Ω(W,S,l) an edge labelling
by Φ+ such that the edge (x, y) receives label α ∈ Φ+ if y = sαx, denoted

x
α−→ y.

(b) The order ≤(W,S,l), or ≤l, or ≤, is the partial order on W such that x ≤ y if

there is a path x = x0
α1−→ x1

α2−→ . . .
αn−→ xn = y from x to y in Ω.

If l = l0, these are called the (root-labelled) Bruhat graph and Bruhat order ; for
l = −l0, one has the reverse Bruhat graph and reverse Bruhat order. We write (in
any poset) xl y if y covers x. In the above orders, this implies l(y) = l(x) + 1.

Exercise. Describe the graph and its labelling for some (small) dihedral groups,
intervals of length ≤ 3, interval [e, srts] in universal (W,S) (no braid relations).

Remarks. (1) The Bruhat order has, in important special cases, geometric and
representation-theoretic interpretations in terms of inclusions of Schubert varieties
and embeddings of Verma modules.
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1.4. Functoriality of Bruhat graph. Let W ′ be a reflection subgroup with canon-
ical based root system (ΦW ′ ,ΠW ′), canonical simple reflections S ′.

Theorem. Fix l = l0 (resp., −l0) and write ≤, Ω for ≤(W,S,l), Ω(W,S,l). Let l′ :=
±l0,W ′ be the corresponding length function for W ′. Let w ∈ W ′.

(a) W ′w has a unique minimal (resp., maximal) element x in ≤.
(b) The map y 7→ yx induces an isomorphism of edge-labelled directed graphs

from Ω(W ′,S′,l′) to the full subgraph of Ω(W,S,l) on vertex set W ′w = W ′x.

This has many application to combinatorics of Bruhat order when applied with
W ′ ranging over dihedral reflection subgroups.

Exercise. Check the theorem for (W,S) of type B2, say W = 〈 s, t | s2 = t2 = (st)4 =
1 〉 and W ′ = 〈 t, sts 〉 which is a reflection subgroup of type A1 × A1. .

1.5. Z-property (or lifting property) of Bruhat order. The following property
plays an important role in inductive arguments involving Bruhat intervals.

Theorem. Let v ≤ w and s ∈ S with v < sv and sw < w:

(1.5.1) sv w

v

yyyyyyyy
sw

Then the following conditions are equivalent:

(a) v ≤ w
(b) sv ≤ w
(c) v ≤ sw

Exercise. Prove it, or see [3].

1.6. For definitions of abstract simplicial complexes and their geometric realization,
order complex Σ(P ) of a finite poset P , regular CW complexes and their face posets
and basic properties of the face poset of a regular CW-complex underlying a ball,
see [4, Appendix 3.7]. We use a non-standard convention of including an empty cell,
so the face poset has a minimum element.

1.7. The topology of the order complex of Bruhat intervals is as follows.

Theorem. Let v ≤ w and n := l(w) − l(v). Then the closed interval [v, w] is the
face poset of a regular CW-complex underlying a ball of dimension l(w)− l(v)−1. In
particular, any maximal chain v = v0 < . . . < vn = w satisfies n = l(w)−l(v), and if
n ≥ 2, then the order complex Σ(v, w) of the open interval (v, w) is a combinatorial
sphere of dimension n− 2.

Proof. The main point is to establish CL-shellability (as in Björner and Wachs [5])
or EL-shellability [9], or give a recursive construction of a suitable regular CW
complex using the Z-property as in [8] or [7]. For a quick introduction to shellability
techniques, see [4, Appendix 3.7] �

Exercise. Why does the result hold for intervals of length 2?
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2. Vector-labeled face lattice of a polyhedral cone

2.1. We assume familiarity with the definitions and basic properties of polyhedral
cones, their faces and face lattices and the duality theorem for polyhedral cones.

General references for this material are are [16], [1]. We say a cone C is salient
if C ∩ −C = {0} i.e. 0 ∈ C but C contains no subspace of positive dimension
(sometimes this condition is called pointedness of C but the terminology is not
uniform).

2.2. Let C be a polyhedral cone in a finite-dimensional real vector space V . Let
〈−,−〉 be an inner product on V and use it to identify the dual cone C∨ of C with
a subset of V : C∨ = { v ∈ V | 〈 v, C 〉⊆R≥0 }. The face of C∨ dual to a face x of C
is C∨∩x⊥. Let F denote the face lattice of C, with partial order ≤ by inclusion, and
define l : F → Z by l(x) := dim(x) := dimRx for x ∈ F . Define a directed graph
ΩC with vertex set F and edges (x, y) for x, y ∈ F with x ≤ y and l(y) = l(x) + 1.
Label the edge (x, y) of Ω by the inner unit normal to x in the linear span of y:

x
α−→ y if α ∈ Ry, 〈x, α 〉 = 0, 〈α, y 〉⊆R≥0 and 〈α, α 〉 = 1.

Remarks. (a) For any path x = x0
α1−→ x1

α2−→ . . .
αn−→ xn = y in ΩC , {α1, . . . , αn}

is an orthonormal basis of Ry ∩ x⊥.
(b) If one identifies the face lattice of C∨ with the opposite poset F op by x 7→

C∨ ∩ x⊥, then ΩC∨ identifies naturally with the opposite labelled graph Ωop

(defined in the natural way).

Exercise. Describe the labelled face lattice for a two-dimensional cone.

2.3. It is well known that the topology of order complexes of polyhedral cones is as
follows.

Theorem. Let v ≤ w and n := l(w) − l(v). Then the closed interval [v, w] is the
face poset of a regular CW-complex underlying a ball of dimension l(w)− l(v)−1. In
particular, any maximal chain v = v0 < . . . < vn = w satisfies n = l(w)−l(v), and if
n ≥ 2, then the order complex Σ(v, w) of the open interval (v, w) is a combinatorial
sphere of dimension n− 2.

Proof. Follows easily from the fact a convex polytope is homeomorphic to ball of
the same dimension and its boundary is the union of its lower dimensional faces.
One can also give a CL-shelling proof (Bruggeser-Mani, discussed in [4, Appendix
3.7]). A proof by CL-shelling techniques can be given of Theorems 1.5 and 2.3
using common properties of the labelings of Bruhat intervals and face lattices (see
[11]). �

2.4. Some basic common properties of labellings of Bruhat interval and polyhedral
cone are as follows (see [11]).

Proposition. Consider an interval [x,w] in ≤l or face lattice of polyhedral cone.
Write l for the covering relation.
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(a) R≥0{α | x
α−→ y ≤ w } is a salient polyhedral cone C↑x,w with {α | x α−→ y ≤

z, xly } as set of representatives of its extreme rays. (Note in the cone case,

x
α−→ y implies xl y).

(b) Dually, R≥0{α | x ≤ y
α−→ w } is a salient polyhedral cone C↓x,wwith {α | x ≤

y
α−→ z, y l w } as set of representatives of its extreme rays

(c) Suppose [x′, w′] is a length two subinterval of [x,w], so its Hasse diagram
and labeling are as follows

w′

y

γ ~~~~~~~~
z

δ
@@@@@@@@

x′
α

@@@@@@@@ β

��������

Then {α, γ} and {β, d} are linearly independent and

(
γ
α

)
=

(
a b
c d

)(
δ
β

)
where

a, b, c, d ∈ R satisfy b > 0, c > 0, ad − bc = −1. In the crystallographic Coxeter
group case (i.e. where 〈α0, α

∨
1 〉 ∈ Z for all α0, α1 ∈ Π), one has a, b, c, d ∈ Z.

For cones, the proof is easy. The proof of (a)-(b) in the Coxeter group case uses
analogues of Bruhat order and reverse Bruhat order defined in the same way as in
1.3 but for more general functions l than l = ±l0. It would be desirable to have a
simpler proof. The proof of (c) reduces to the case of two dimensional cones, and
intervals in dihedral groups (using functoriality of the Bruhat graph for the latter)
where it can be checked by simple calculation.

2.5. Labelings of face lattices of polyhedral cones similar to those above but with
respect to a more general bilinear form arise naturally in relation to Bruhat intervals,
but are not well understood in general. Here are some natural questions about such
labelings.

Question. (a) Suppose that 〈−,−〉 : V × V → R is assumed to just be a non-
degenerate bilinear form (not necessarily symmetric). What extra properties
are required for labelling as above to be defined and to have similar properties
to those for case of positive semidefinite inner product. For example, do they
hold for a “generic” bilinear form?

(b) In the case of a Bruhat interval [x, y], the polyhedral cone of non-negative
linear combination of labels of edges of the Hasse diagram contains no line
(since it is contained in the cone spanned by Φ+). Is this true for ΩC for any
(or some) labelling induced by an inner product (or bilinear form as in (a)).

(c) If (b) has an affirmative answer, can a proof of dual EL-shellability of face
posets of polyhedral cones be obtained by imitating the proof for Bruhat
intervals? (I do not even know if such face lattices are EL-shellable, in
general).
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Remarks. Similar edge-labelled graphs satisfying certain conditions arise as moment
graphs (see Braden and MacPherson [6]). In general, under mild conditions on such
a graph, there is an associated representation category, which for natural graphs
is often closely related to associated natural geometric or representation theoretic
categories. The categories can be constructed from the labelled poset as in [6] or
as an instance of a more general construction in [12]. One of the main goals of this
ideas described here is is to relate such graphs from Bruhat intervals and polyhedral
cones in order to construct functors between associated representation categories.

2.6. It can be shown that an interval [x, y] in ≤l which has no length three subin-
terval with two coatoms is isomorphic to the face lattice of a polyhedral cone. The
proof is by a lengthy and technical induction using the Z-property. A sufficiently
nice answer to the following question could yield a simpler proof of a more general
fact.

Question. Suppose given a poset [x,w] which is the face poset of a regular CW-
complex underlying a ball and with a labeling of edges of the Hasse diagram of
[x,w] by elements of a real vector space V , satisfying properties like those in 2.4(a)–
(c). Suppose that the labels of edges in some (hence any) maximal chain from x
to w are linearly independent. What (minimal) conditions ensure there is a poset
isomorphism from [x,w] to the face lattice of C↑x,w taking y ∈ [x,w] to C↑x,y? One

would also want the conditions to imply that C↑x,y is “naturally” dual to C↓x,y, and
that the condition be inherited by closed subintervals etc.

3. Deodhar’s conjecture

3.1. For a polyhedral cone C and x ≤ y ≤ z in F , one has

(3.1.1) |{w | x ≤ w → y or y → w ≤ z }| ≥ l(z)− l(x).

The proof of this reduces by duality to the case y = x, when it is equivalent to the
statement that a d = l(z)− l(y)-dimensional polyhedral cone has at least d extreme
rays. Equivalently, by homogenization, it is enough to show a (d − 1)-dimensional
polytope has at least d extreme points, which is trivial.

Theorem (Deodhar’s conjecture). For x ≤ y ≤ z in W , (3.1.1) holds.

3.2. Some (informal) motivation. For a semisimple complex algebraic group G
(e.g. SLn) and Borel subgroup G (upper triangular matrices), the flag variety G/B
has a natural structure of complete, complex algebraic variety. In the analytic topol-
ogy, it is a compact, complex manifold. Let T ⊆B be a maximal torus (diagonal
subgroup) and W = N(T )/T be the Weyl group, which is a finite (crystallographic)
Coxeter group. (It is Sn for SLn). The Bruhat decomposition G = ∪̇w∈WBwB of
G into double cosets of B gives rise to a (CW) cell decomposition of G/B with
cells BwB/B ∼= Cl(w) where l = l0. The closure X(w) of BwB/B is an (in general
singular) algebraic variety called a Schubert variety. One has X(v)⊆X(w) if and
only if v ≤ w (Bruhat order). The CW-structure given by Schubert varieties pro-
vide a natural basis for the cohomology ring H•(G/B,R) indexed by W . Another
description of this cohomology as ring was given by Borel; it is isomorphic to R/I
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where R is the symmetric algebra on V (i.e. ring of polynomials on a basis V )
and I is the ideal of R generated by W invariant polynomials of positive degree.
The relationship between these pictures was described algebraically by Bernstein-
Gelfand-Gelfand (see [2]), and more generally by Kostant and Kumar [14] in terms
of what they call the nil Hecke ring of W . The first non-trivial case of Deodhar’s
conjecture (type A) was proved by Deodhar using the fact the dimension of the
tangent space of an irreducible variety at each point is not less than the dimension
of the variety (equality holds at smooth points, so equality in Deodhars conjecture
provides a necessary condition for smoothness at certain points of type A Schubert
varieties).

3.3. We return to the case of general W . Let R := Sym(V ) denote the symmetric
algebra of V , N-graded so R0 = R and R2 = V . Hence R2n is the set of homoge-
neous polynomials of degree n in the usual sense on a basis of V , and R2n+1 = 0.
(The even grading will play no role in these talks, but for instance, makes R triv-
ially “graded commutative” which is appropriate for its relation to cohomology of
Schubert varieties etc). Let Q be the quotient field of R. Form the subring QW of
functions Q → Q generated by actions of all elements of w on Q and multiplica-
tions by elements of Q. Let δw denote map q 7→ w(q) : Q → Q. Then QW has the
elements δw for w ∈ W as right (or left) Q-basis. The multiplication is determined
by (δvqv)(δwqw) = δvww

−1(qv)qw. There is a ring anti-automorphism h 7→ h̄ of QW

given by δwqw 7→ qwδw−1 .
The nil Hecke ring H is the subring of QW consisting of functions in QW which

map R→ R.

Exercise. For α ∈ Φ, xα := 1
α

(δsα − δe) is in H. One has x2α = 0 and for χ ∈ V ,
χxα = xαsα(χ)− 〈χ, α∨ 〉δe.

The elements xα for simple α can be shown to satisfy the braid relations, giving
rise to elements xw for w ∈ W with xw = xα1 · · ·xαn whenever w = sα1 · · · sαn is
reduced, αi ∈ Π. These elements from a (left or right) R-basis of the nil Hecke ring.

Exercise. Check the xα satisfy the braid relations in type A2 by direct computation.

3.4. More motivation. If W is finite, the xα (and hence xw) preserve the ideal I
generated by invariant polynomials of positive degree and hence pass to operators
on the coinvariant algebra R/I. For finite Weyl groups, these operators were defined
by Demazure and Bernstein-Gelfand-Gelfand for study of the cohomology ring of
flag varieties. For instance, the basis of cohomology from the Schubert cells can be
constructed from the (unique) top dimensional class using them, and one can recover
Chevalley’s formula for the action of V ⊆S on the cohomology ring in this basis.
Later, for infinite crystallographic W , Kostant and Kumar used them to construct
the cohomology ring of the flag variety of a Kac-Moody group and then the “dual”
nil Hecke ring was shown to give the T -equivariant cohomology.

One can expand xw =
∑

v δvAv,w and δw =
∑

v δvBv,w for certain inverse matrices
(Av,w), (Bv,w) of rational functions. Remarkably given their definition, after triv-
ial renormalization, they play a completely symmetric role despite the completely
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asymmetric role of δw and xw above; the recurrence formulae for them differ only by
replacing l by −l (this turns out have a simple explanation in a general commutative
algebra context).

The renormalized functions will be denoted Sx,w below. There is a criterion [15]
which describes the smooth points of Schubert varieties (for crystallographic groups)
in terms of these functions. They also appear in certain multiplicity one criteria for
representations in characteristic zero and p constructed using ideas in [12]. For
dihedral groups, the numerators are binomial coefficient modeled on series of root
coefficients (for the affine dihedral groups, the series of root coefficient is 0, 1, 2, 3, . . .
and one recovers ordinary binomial coefficients.)

3.5. Sketch of a proof of Deodhar’s conjecture. For x ∈ W , let σx : R → R
denote the graded R-algebra automorphism induced by x−1 : V → V . The argument
in [10] can be adapted to give an self-contained proof of Deodhar’s conjecture using
steps as follows.

(1) Show the graded free R-mod M = M (l) with basis mx (of degree 2l(x)) for
x ∈ W , has a left R-module action making it an R′ := R ⊗R R-modules
given by

(3.5.1) χmx = mxσx(χ)−
∑
x
α−→y

l(y)=l(x)+1

my〈x, α∨ 〉

for χ ∈ V = R2.

Proof. This is an algebraic version of the Chevalley formula for (T -equivariant)
cohomology. One can check the definition gives a well defined action using
the properties of labelings of length two intervals. Another proof can be
obtained using following ideas: for l = −l0, set my = ty where ty = x̄y from
nil Hecke ring; for l = l0, consider the dual basis of the (right) R-graded dual
module HomR(M (−l0), R). One then has (in either case)

(3.5.2) trmy =

{
mry, ry < y

0, otherwise.
.

�

(2) Show that M ⊗R Q has a right Q-basis δx satisfying χδx = δxσx(χ) for all

χ ∈ V such that mx =
∑

y≥x δyS
(l)
x,y where S

(l)
x,y ∈ Q, S

(l)
x,y = 0 unless x ≤ y,

S
(l)
x,x = 1.

Proof. For reverse Bruhat order and Bruhat order, this can be deduced from
the construction of M in (1) (to obtain Sx,x = 1, one has to rescale the
δx there by multiplication by certain elements of Q). Another proof uses
a simple fact from homological algebra in [12] to show that the bimodule
extensions between obvious subquotient bimodules of M (isomorphic as right
R⊗R-module to δxR) split over Q. �
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(3) Obtain recurrence formula

(3.5.3) S(l)
x,y(σx − σy)(χ) =

∑
x
α−→z

l(z)=l(x)+1

〈χ, α∨ 〉S(l)
z,y

for χ ∈ V .

Proof. This follows directly by putting (2) in the Chevalley formula. �

(4) Obtain

(3.5.4) 0 6= S(l)
x,y =

ε
l(y)−l(x)
l f

(l)
x,y∏

x−1≤z−1
β−→y−1

β

which is homogeneous of degree−2(l(y)−l(x)), (i.e. numerator, denominator
are homogeneous of degree n, d with d−n = 2(l(y)− l(x))) and where εl = 1
if l = l0 and εl = −1 if l = −l0.

Proof. For this, one takes χ = x(χ′) for some χ′ in the interior of the fun-
damental chamber for V i.e. with 〈χ′, α 〉 > 0 for all α ∈ Π. This implies
that χ′ − z(χ′) ∈ R≥0Π for all z ∈ W . The only linear factor of the denomi-

nator of S
(l)
x,y not already present in some Sz,y with x < z ≤ y is a constant

times (σx − σy)(χ) = (1− y−1x)(χ′); but if x, y are not joined by an edge of
the Bruhat graph, the image of (1− y−1x)(V ) contains two relatively prime
(i.e. non-proportional) linear terms and neither can be in the denominator

of S
(l)
x,y. �

(5) Since n ≥ 0, get d ≥ 2(l(y) − l(x)) and |{ β ∈ Φ+ | x−1 ≤ z−1
β−→ y−1 }| ≥

l(y) − l(x). Since ≤l can be either Bruhat order or reverse Bruhat order,
Deodhar’s conjecture follows.

3.6. The “possibly infinite upper triangular” matrices S
(l0)
x,y , S

(−l0)
y,x , with x, y ∈ W ,

are mutually inverse:

(3.6.1)
∑
y

S(l0)
x,y S

(−l0)
z,y = δx,z =

∑
y

S(l0)
y,x S

(−l0)
y,z

Proof. This comes from an identification of M (−l0) as the graded dual of M (l0). �

3.7. In the argument of 3.5, noting that 0 6= χ′ − y−1x(χ′) ∈ R≥0Π, it follows that

f
(l)
x,y times some (nonzero) polynomial with nonnegative coefficients in the simple

roots is itself a (nonzero) polynomial with non-negative coefficients in the simple
roots.

Conjecture. Let N := l(y) − l(x). Above, ε
l(y)−l(x)
l S

(l)
x,y is expressible as a sum

of terms each of the form c
β1...βN

for certain scalars c ≥ 0 and certain distinct

β1 . . . , βN ∈ { β ∈ Φ+ | x−1 ≤ z−1
β−→ y−1 }.
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Exercise. Compute Ssrts,s for the universal group (in reverse Bruhat order) and check
the conjecture.

4. Volume formula for polyhedral cones

This section repeats the proof of Deodhar’s conjecture mutatis mutandis for
vector-labeled face lattice F of a polyhedral cone C (though here there is no good
analogue of the nil Hecke ring, but only of the rational functions Sx,w which deter-
mine its structure constants).

4.1. Let l(x) := dim(x) for x ∈ F . Let R := Sym(V ) denote the symmetric algebra
of V , N-graded so R0 = R and R2 = V . Again let Q be the quotient field of R. For
x ∈ F , let σx : R→ R denote the graded R-algebra homomorphism induced by the
linear map V → V which is the orthogonal projection on x⊥.

(1) Show the graded free R-mod M = M (C) with basis mx (of degree 2l(x)) for
x ∈ F , has a left R-module action making it an R′ := R ⊗R R-module with
action given by

(4.1.1) χmx = mxσx(χ)−
∑
x
α−→y

my〈x, α 〉

for χ ∈ V = R2.

Proof. Check using properties of the labeling. �

(2) Let Q be the quotient field of R. Show that M ⊗R Q has a right Q-basis δx
satisfying χδx = δxσx(χ) for all χ ∈ V such that mx =

∑
y≥x δyS

(C)
x,y where

S
(C)
x,y ∈ Q and S

(C)
x,y = 0 unless x ≤ y, Sx,x = 1.

Proof. By the homological algebra argument. �

(3) Obtain the recurrence formula

(4.1.2) S(C)
x,y (σx − σy)(χ) =

∑
x
α−→z

〈χ, α 〉S(C)
z,y

for χ ∈ V .

Proof. As before. �

(4) Obtain

(4.1.3) 0 6= S(C)
x,y =

f
(C)
x,y∏

x≤z
β−→y

β

which is homogeneous of degree −2(l(y)− l(x)).

Proof. As before. �
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Remarks. The construction of M (C) is a special case of a family of modules for
certain shellable subspace arrangements in vector spaces over general fields.applied
here to the arrangement consisting of linear spans of the faces of the cone. (In
general, there is one module for each element of the poset and in each module, the
number of basis elements associated to an element of the poset, if nonzero, is the
dimension of the top-dimensional cohomology of a corresponding open subinterval
of the poset. In this case, the modules all all arise as submodules of a single module,
and there is just 1 basis element for each element of the poset because the open
intervals are spherical).

4.2. Identifying the face lattice of C∨ with F op (which is F as a set) the matrices

S
(C)
x,y , S

(C∨)
y,x , with x, y ∈ F satisfy:

(4.2.1)
∑
y

(−1)l(y)−l(x)S(C)
x,y S

(C∨)
z,y = δx,z =

∑
y

(−1)l(y)−l(x)S(C)
y,x S

(C∨)
y,z

4.3. For x ≤ y ∈ F , recall that C↑x,y is the polyhedral cone R≥0{α | x
α−→ z ≤ y }

and C↓x,y is the polyhedral cone R≥0{α | x ≤ z
α−→ y }. These are mutually dual

polyhedral cones (in their linear span) with face lattices naturally identified with
[x, y] and [x, y]op respectively.

Let V ∗ be the dual space of V identified with V via 〈−,−〉. We identify R =
Sym(V ) = Sym(V ∗) with the algebra of real polynomial functions on V and Q with
the algebra of rational functions on V .

Let rVol(P ) (relative volume) denote the dim(P )-volume of a convex set P in its
affine span aff(P ), with respect to measure induced by 〈−,−〉 on the translation
space of aff(P ).

Theorem. Let x ≤ y in F and N := l(y)− l(x). If χ ∈ V with 〈χ, α 〉 > 0 for all

α with x ≤ z
α−→ y, then S

(C)
x,y (χ) = (l(y)− l(x))! · rVol({ v ∈ C↓x,y | 〈 v, χ 〉 ≤ 1 }.

Proof. If P is a (positive-dimensional) convex polytope and p ∈ aff(P ), then one
has

(4.3.1) rVol(P ) =
1

dim(P )

∑
F

〈uF , pF − p 〉 rVol(F )

where F runs over the distinct facets (codimension-1 faces) of P , pF is a point of
aff(F ) and uF is the outward unit normal to P on F . (If p is in the relative interior
of P , this follows by decomposing P into the union of pyramids with vertex p over
the facets F . The independence of rVol(P ) from the choice of such p then implies
that this independence holds for all p.) The theorem follows by induction on N
by comparison of (4.1.2) and (4.3.1), using the formula for relative volume of the
pyramid { v ∈ C↓z,y | 〈 v, χ 〉 ≤ 1 } (for z = x or x l z ≤ y) in terms of the relative

volume of its base { v ∈ C↓z,y | 〈 v, χ 〉 = 1 } and its perpendicular height. �

Exercise. (a) Check the theorem for a rank two cone.
(b) Check the omitted details of the proof.
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4.4. It follows from the preceding theorem that for any salient polyhedral cone
C in V (i.e. C ∩ −C = {0}) there is a rational function volC ∈ Q, called the
volume function of C, with the following property: for all χ ∈ V such that 〈χ, α 〉 >
0 for each α ∈ V such that R≥0α is an extreme ray of C, one has volC(χ) =
dim(C)! · rVol({ v ∈ C | 〈 v, χ 〉 ≤ 1 }. Note that the set of χ ∈ V with the above
property is a non-empty open subset of V (in standard topology) and so volC is
uniquely determined as an element of Q. Moreover, volC is homogeneous of degree
−2 dim(C) and is expressible with denominator

∏
α where the prod is over a set of

representatives of extreme rays of C (this gives a proof along the same lines as that
of Deodhar’s conjecture that a d-dimensional polyhedral cone has at least d extreme
rays). The following shows the analogue of conjecture 3.7 holds for cones.

Corollary. Let assumptions be as in the preceding theorem. Then S
(C)
x,y is expressible

as a sum of terms each of the form c
β1...βN

for certain scalars c > 0 and certain

distinct β1, . . . , βN ∈ { β ∈ V | x ≤ z
β−→ y } where N = l(y)− l(x).

Proof. Choose a polytopal base B for C↓x,y, so every non-zero element of C↓x,y is
uniquely expressible in the form λb with λ ∈ R>0 and b ∈ B. It is known that B
has a triangulation in which the simplexes occurring have all their vertices amongst
the vertices of B (see [16] or [1]). Taking cones over these simplexes gives rise to
a corresponding decomposition of C↓x,y into simplicial cones Ci the extreme rays of

which are amongst the extreme rays of C↓x,y. Suppose that C1, . . . , Cm are the N -
dimensional simplicial cones (others have smaller dimension). Then for χ as in the
theorem,

(4.4.1) rVol({ v ∈ C↓x,y | 〈 v, χ 〉 ≤ 1 } =
m∑
i=1

rVol({ v ∈ Ci | 〈 v, χ 〉 ≤ 1 }.

This implies that Sx,y = vol(C↓x,y) =
∑m

i=1 vol(Ci). Now if β1, . . . , βN are represen-
tatives of the extreme rays of Ci, then for degree reasons, vol(Ci) = c

β1···βN
for some

c ∈ R which clearly must be positive. The corollary follows. �

4.5. Some natural questions on the volume functions volC follow.

Question. (a) Is there a natural interpretation of volC(χ) for other χ ∈ V for
which the rational function volC is defined? (for instance, as a signed volume
of another polyhedral cone).

(b) For which polyhedral cones C,D is volC = ± volD.
(c) What is the nature of the analogous function volC (where defined) for C a

general closed salient cone?

4.6. Define the cone group C as the abelian group with generators [C] for C a
salient polyhedral cone in V subject to relations

(4.6.1) [C1 ∪ C2] = [C1] + [C2]− [C1 ∩ C2]

whenever C1, C2 are polyhedral cones such that C1 ∪C2 is a salient polyhedral cone
(note that C1 ∩ C2 is then a salient polyhedral cone too). A valuation of C in an
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abelian group A is a group homomorphism ν : C → A. For example, for v ∈ V ,
there is a valuation νv : C → Z determined by νv([C]) = 1 if v ∈ C and νv([C]) = 0
if v 6∈ C. Another valuation is determined by [C] 7→ 0 if RC 6= V and [C] 7→ volC if
RC = V . To make the relationship of the next conjecture to 4.2.1 clearer, we shall
use the following notation: for salient polyhedral cones C, D with RC ∩ RD = 0,
write [C] · [D] = [C +D] (note C +D is a salient polyhedral cone).

Conjecture. For x < z in F , one has in C

(a)
∑

z∈[x,y](−1)l(z)−l(x)[C↓x,z] · [C↑z,y] = 0.

(b)
∑

z∈[x,y](−1)l(z)−l(x)[C↑x,z] · [C↓z,y] = 0.

Informally, this claims that the two “matrices” with entries given by [C↓x,y] and

(−1)l(y)−l(x)[C↑x,y] for x, y ∈ F are “mutually inverse.”

Exercise. Check the conjecture for two-dimensional cones.

5. Conjecture on Bruhat intervals and polyhedral cones

5.1. The following conjecture asserts loosely that the undirected root-labelled Bruhat
graph of a Bruhat interval arises as a degeneration of a vector-labelled Hasse diagram
of some polyhedral cone in such a way that the Bruhat interval identifies with the
face poset of a regular “polytopal” CW-complex (determined by the degeneration)
whose cells are unions of faces of a base of the polyhedral cone.

Conjecture. Let Ω be a closed interval in W in ≤l. Then there is a non-canonically
associated vector space U , polyhedral cone C in U , a linear map L : U → V , a
labeling of covering edges of the Hasse diagram of the face lattice F of C, written
x

α−→ y for xl y in F and a function ι : F → Ω, with the following properties:

(a) The labeling of F has the properties in Proposition 2.4

(b) For an edge x
α−→ y of F , have ι(x)

uL(α)−−−→ ι(x) or ι(y)
uL(α)−−−→ ι(x) where

u ∈ R∗ (units of R) i.e. ι(x) and ι(y) are joined in Ω by an undirected edge
with label uL(α) ∈ Φ+ .

(c) For y ∈ [x,w], let Cy := ∪z where the union is over all z ∈ F such that
z ≤ z′ for some z′ ∈ F with ι(z′) ≤ y. Fix any polytopal base B of C (the
choice of B is immaterial) and set σy = Cy ∩ B. Then there is a regular
CW-complex underlying B with face poset Ω (including ∅) and underlying
closed cells σy for y ∈ Ω.

Example. Type A2 can be done by a type of combinatorial Bott-Samelson resolu-
tion which works more generally.

5.2. Further parts of the conjecture concern compatibly with much natural addi-
tional structure attached to Bruhat intervals and polyhedral cones. Only a small
portion of this structure has been described here (e.g. the rational functions Sx,w).
Additional evidence that the conjecture is natural is its compatibility with con-
structions involving the Z-property. It would be very interesting to identify general
conditions on a poset Ω and U , C, L, F , i as above which make Ω “Bruhat like.”
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Examples of posets Ω and such data not apparently coming from Bruhat inter-
vals or face lattices of cones can be defined using the Z-property to glue together
face lattices of suitably related polyhedral cones. One conjectures the analogues of
Kazhdan-Lusztig polynomials for such structures are well-defined and have similar
properties as conjectured for general Coxeter groups (e.g. non-negative coefficients).
One may hope that development of a suitable framework related to the conjecture
may provide a natural (more functorial) context for study even of classical Kazhdan-
Lusztig polynomials for general Coxeter groups.

5.3. In the case when x
α−→ y in Ω implies xl y; then one may choose ι to be poset

isomorphism. There is trivial (algebraic) degeneration, but no difficult (combina-
torial) degeneration and the conjecture and its elaborations can be proved in this
case.
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